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4.1 Introduction 
 
Statistics in the ORA laboratory may be used to describe and summarize the results of sample 
analysis in a concise and mathematically meaningful way.  Statistics may also be used to predict 
properties (ingredient, acidity, quantity, dissolution, height, weight) of a contaminant or of a 
regulated product as a whole based on measurements made on a subset, or sample, of the 
contaminant or product.  All statistical concepts are ultimately based on mathematically derived 
laws of probability.  Understanding statistical concepts will allow the ORA analyst to better 
convey analytical results with the maximum amount of assurance as to quality of the data. 
 
By profession and training, the ORA laboratory analyst is motivated to carry out measurements 
precisely, and to report results that contain the maximum amount of useful information.  Proper 
application of statistics gives this ability, while allowing for the fact that there is inherent error 
(both random and determinate) in virtually every laboratory measurement made. 
 
This section is not meant to be an in-depth reference for the myriad ways that statistics could be 
applied in the laboratory, but rather as a general guide for situations commonly encountered in 
the ORA laboratory.  The section also gives guidance on various aspects of data presentation and 
verification. 
 
4.2 General Considerations 
 
Statistical procedures used to describe measurements of samples in the ORA laboratory allow 
regulatory decisions to be made in as unbiased manner as possible.  The following are 
numerically descriptive measures commonly used in ORA laboratories. 
 
4.2.1 Accuracy, Precision, and Uncertainty 
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The accuracy of a measurement describes the difference between the measured value and the 
true value.  Accuracy is said to be high or low depending on whether the measured value is near 
to, or distant from, the true value.  Precision is concerned with the differences in results for a set 
of measurements, regardless of the accuracy.  Applied to an analytical method as used in an 
ORA laboratory, a highly precise method is one in which repeated application of the method on a 
sample will give results which agree closely with one another.  Precision is related to 
uncertainty: a series of measurements with high precision will have low uncertainty and vice 
versa.  Terms such as accuracy, precision, and uncertainty are not mathematically defined 
quantities but are useful concepts in understanding the statistical treatment of data.  Exact 
mathematical expressions of accuracy and precision (error and deviation), will be defined in the 
next section.  
 
As an example of these terms, consider shooting arrows at a target, where the “bull’s eye” is 
considered the true value.  An archer with high precision (low uncertainty) but low accuracy will 
produce a tightly clustered pattern outside the bull’s eye; if low precision (high uncertainty) and 
low accuracy, the pattern will be random rather than clustered, with the bull’s eye being hit only 
by chance. The best situation is high accuracy and high precision: in this case a tight cluster is 
found in the bull’s eye area.  This example illustrates another important concept: accuracy and 
precision depend on both the bow and arrow, and the archer.  Applied to a laboratory procedure, 
this means that the reliability of results depends on both the apparatus/instruments used and the 
analyst.  It is extremely important to have a well trained analyst who understands the method, 
applies it with care (for example by careful weighing and dilution), and uses a calibrated 
instrument (demonstrated to be operating reliably).  Without all of these components in place, it 
is difficult to obtain the reliable results needed for regulatory analysis. 
 
4.2.2 Error and Deviation; Mean and Standard Deviation 
 
The concepts of accuracy and precision can be put on a mathematical basis by defining 
equivalent terms: error and deviation.  This will allow the understanding of somewhat more 
complicated statistical formulations used commonly in the ORA laboratory. 
 
If a set of N replicate measurements x1, x2, x3,…,xn , were made (examples: weighing a vial N 
times, determining HPLC peak area of N injections from a single solution, measuring the height 
of a can N times, …), then: 
 
Ei = xi – μ 
  
where Ei  = error associated with measurement i, 
 xi = result of measurement i, and 
 μ = true value of measurement. 
 
The definition of error often has little immediate practical application, since in many cases μ, the 
true value, may not be known.  However, the process of calibration against a known value (such 
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as a chemical or physical standard) will help to minimize error by giving us a known value with 
which to compare an unknown.  
 
The deviation, a measure of precision, is calculated without reference to the true value, but 
instead is related to the mean of a set of measurements.  The mean is defined by: 
 

∑
Ν

= Ν
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1
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where  X = mean of set of N measurements, 

 xi= ith measurement, and 
 N = Number of Measurements. 
 

Note: this is the arithmetic mean of a set of observations. There are other types of mean which 
can be calculated, such as the geometric mean (see the section on “Application of Statistics to 
Microbiology” below), which may be more accurate in special situations. 
 
Then, the deviation, di, for each measurement is defined by: 
 
di = xi - X  
  
Using the example of the archer shooting arrows at a target, the deviation for each arrow’s 
position is the distance from the arrow’s position to the calculated mean of all of the arrow’s 
positions. 
 
Finally, the expression of deviation most useful in many ORA laboratory applications is s, the 
standard deviation: 
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where s = standard deviation, and other terms are as previously defined. 
 
The standard deviation is then a measure of precision of a set of measurements, but has no 
relationship to the accuracy. The standard deviation may also be expressed in relative terms, as 
the relative standard deviation, or RSD: 
 

RSD (%) = 
X

s))(100(  
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Whereas the standard deviation has the same units as the measurement, the RSD is 
dimensionless, and expressed as a percentage of the mean. 
 
Standard deviation as defined above is the correct choice when we have a sample drawn from a 
larger population. This is almost always the case in the ORA laboratory: the sample which has 
been collected is assumed to be “representative” of the larger population (for example, a batch of 
tablets, lot of canned goods, field of wheat) from which it has been taken. As it is taken through 
analytical steps in the laboratory (by subsampling, compositing, diluting, etc.) the representative 
characteristic of the sample is maintained. 
 
If the entire population is known for measurement, the standard deviation s is redefined as σ, the 
population standard deviation. The formula for σ differs from that of s in that (N-1) in the 
denominator is replaced by N.  The testing of an entire population would be a rare circumstance 
in the ORA laboratory, but may be useful in a research project. 
 
Statistical parameters such as mean and standard deviation are easily calculated today using 
calculators and spreadsheet formulas. Although this is convenient, the analyst should not forget 
how these parameters are derived. 
 
4.2.3 Random and Determinate Error 
 
Recall the definition of error in section 4.2.2 above. Errors in measurement are often divided into 
two classes: determinate error and non-determinate error. The latter is also termed random 
error. Both types of error can arise from either the analyst or the instruments and apparatus used, 
and both need to be minimized to obtain the best measurement, that with the smallest error. 
 
Determinate error is error that remains fixed throughout a set of replicate measurements. 
Determinate error can often be corrected if it is recognized. Examples include correcting titration 
results against a blank, improving a chromatographic procedure so that a co-eluting peak is 
separated from the peak of interest, or calibrating a balance against a NIST-traceable standard. In 
fact, the purpose of most instrument calibrations is to reduce or eliminate determinate error. 
Using the example of the archer shooting arrows at a target, calibration of the sights of the bow 
would decrease the error, leading to hitting the bull’s eye.  
 
Random error is error that varies from one measurement to another in an unpredictable way in a 
set of measurements. Examples might include variations in diluting to the mark during 
volumetric procedures, fluctuations in an LC detector baseline over time, or placing an object to 
be weighed at different positions on the balance pan. Random errors are often a matter of 
analytical technique, and the experienced analyst, who takes care in critical analytical operations, 
will usually obtain more accurate results. 
 
4.2.4 The Normal Distribution 
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In the introduction to this chapter, it was briefly mentioned that statistics is derived from the 
mathematical theory of probability. This relationship can be seen when we consider probability 
distribution functions, of which the normal distribution function is an important example.  The 
normal distribution curve (or function) is of great value in aiding understanding of measurement 
statistics, and to interpret results of measurements. Although a detailed explanation is outside the 
scope of this chapter, a brief explanation will be beneficial. The normal distribution curve 
describes how the results of a set of measurements are distributed as to frequency; assuming only 
random errors are made. It describes the probability of obtaining a measurement within a 
specified range of values. It is assumed here that the values measured (i.e. variables) may vary 
continuously rather than take on discrete values (the Poisson distribution, applicable to 
radioactive decay is an example of a discrete probability distribution function; see discussion 
under “Statistics Applied to Radioactivity”). The normal distribution should be at least somewhat 
familiar to most analysts as the “bell curve” or Gaussian curve. The curve can be defined with 
just two statistical parameters that have been discussed: the true value of the measured quantity, 
μ, and the true standard deviation, σ. It is of the form: 
 

Y =  { }e x 2/)(2/1 σµ−−  
  
Where Y= frequency of occurrence of a measurement (a value between 0 and 1), 
 x = the magnitude of the measurement, 
 μ = the true value of the measurement, 
 σ = true standard deviation of the population, and 
 e = base of natural logarithms (2.718…). 
 
An example of  two normal curves with the same true value, μ, but two different values of σ is 
shown below (this was calculated using an Excel® spreadsheet, using the formula above and an 
array of x values): 
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Some properties of the normal distribution curve that are evident by inspection of the graph and 
mathematical function above go far in explaining the properties of measurements in the 
laboratory: 
 

• In the absence of determinate errors, the measurement with the most probable value 
will be the true value, μ. 

 
• Errors (i.e. x-μ), as defined previously, are distributed symmetrically on either side of 

the true value, μ; errors greater than the mean are equally as likely as errors below the 
mean. 

 
• Large errors are less likely to occur than small errors. 
 
• The curve never reaches the y-axis but approaches it asymptotically: there is a finite 

probability of a measurement having any value. 
 
• The probability of a measurement being the true value increases as the standard 

deviation decreases. 
 
4.2.5 Confidence Intervals 
 
The confidence interval of a measurement or set of measurements is the range of values that the 
measurement may take with a stated level of uncertainty.  Although confidence intervals may be 
defined for any probability distribution function, the normal distribution function illustrates the 
concept well. 
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Approximately 68% of the area under the normal distribution curve is included within ±1 
standard deviation of the mean. This implies that, for a series of replicate measurements, 68% 
will fall within ±1 standard deviation of the true mean. Likewise, 95% of the area under the 
normal distribution curve is found within about ± 2σ (to be precise, 1.96 σ), and approximately 
99.7% of the area of the curve is included within a range of the mean ±3σ. A 95% confidence 
interval for a series of measurements, therefore, is that which includes the mean ± 2σ. An 
example of the application of confidence limits is in the preparation of control charts, discussed 
in Section 7.6 below. 
 
4.2.6 Populations and Samples: Student’s t Distribution 
 
In the above discussion, we are using the true standard deviation, σ (i.e. the population standard 
deviation). In most real life situations, we do not know the true value of σ. In the ORA 
laboratory, we are generally working with a small sample which is assumed to be representative 
of the population of interest (for example, a batch of tablets, a tanker of milk). In this case, we 
can only calculate the sample standard deviation, s, from a series of measurements. In this case, s 
is an estimate of σ, and confidence limits need to be expanded by a factor, t, to account for this 
additional uncertainty. The distribution of t is called the Student’s t Distribution. Further 
discussion is beyond the scope of this chapter, but tables of t values, which depend on both the 
confidence limit desired and the number of measurements made, are widely published.   
 
4.2.7 References 
 
The following are general references on statistics and treatment of data that may be useful for the 
ORA Laboratory: 
 
Dowdy, S., Wearden, S. (1991). Statistics for research (2nd ed.). New York: John Wiley & Sons. 
 
Garfield, F.M. (1991). Quality assurance principles for analytical laboratories.  Gaithersburg, 
MD: Association of Official Analytical Chemists. 
 
Taylor, J. K. (1985). Handbook for SRM users (NBS Special Publication 260-100). Gaithersburg, 
MD: National Institute for Standards and Technology. 
 
4.3 Data Handling and Presentation 
 
In the most general sense, analytical work results in the generation of numerical data. Operations 
such as weighing, diluting, etc. are common to almost every analytical procedure, and the results 
of these operations, together with instrumental outputs, are combined mathematically to obtain a 
result or series of results. How these results are reported is important in determining their 
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significance. As a regulatory agency, it is important that we report analytical results in a clear, 
unbiased manner that is truly reflective of the operations that go into the result. Data should be 
reported with the proper number of significant digits and rounded correctly. Procedures for 
accomplishing this are given below: 
 
4.3.1 Rounding of Reported Data 
 
When a number is obtained by calculations, its accuracy depends on the accuracy of the number 
used in the calculation.  To limit numerical errors, an extra significant figure is retained during 
calculations, and the final answer rounded to the proper number of significant figures (see next 
section for discussion of significant figures). 
 
The following rules should be used: 
 

• If the extra digit is less than 5, drop the digit. 
 

• If the extra digit is greater than 5, drop it and increase the previous digit by one. 
 
• If the extra digit is five, then increase the previous digit by one if it is odd; otherwise 

do not change the previous digit. 
 
Examples are given in the following table: 
 
 

Calculated 
Number 

Significant 
digits to report 

Number with one 
extra digit retained 

Reported 
rounded 
number 

79. 35432 4 79.354 79.35 
99.98798 5 99.9879 99.988 
32.9653 4 32.965 32.96 
32.9957 4 32.995 33.00 
0.0396 1 0.039 0.04 
105.67 3 105.6 106 

29 2 29 29 
  

 
4.3.2 Significant Figures 
 
Significant figures (or significant digits) are used to express, in an approximate way, the 
precision or uncertainty associated with a reported numerical result. In a sense, this is the most 
general way to express “how well” a number is known. The correct use of significant figures is 
important in today’s world, where spreadsheets, handheld calculators, and instrumental digital 
readouts are capable of generating numbers to almost any degree of apparent precision, which 
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may be much different than the actual precision associated with a measurement. A few simple 
rules will allow us to express results with the correct number of significant figures or digits. The 
aim of these rules is to ensure that the final result should never contain any more significant 
figures than the least precise data used to calculate it. This makes intuitive as well as scientific 
sense: a result is only as good as the data that is used to calculate it (or more popularly, “garbage 
in, garbage out”). 
 
4.3.2.1 Definitions and Rules for Significant Figures 
 

• All non-zero digits are significant. 
 
• The most significant digit in a reported result is the left-most non-zero digit: 359.741 

(3 is the most significant digit). 
 
• If there is a decimal point, the least significant digit in a reported result is the right-

most digit (whether zero or not): 359.741 (1 is the least significant digit). If there is 
no decimal point present, the right-most non-zero digit is the least significant digit. 

 
• The number of digits between and including the most and least significant digit is the 

number of significant digits in the result: 359.741 (there are six significant digits). 
 
The following table gives examples of these definitions: 

 
 Number Sig. 

Digits 
A 1.2345 g 5 
B 12.3456 g 6 
C 012.3 mg 3 
D 12.3 mg 3 
E 12.30 mg 4 
F 12.030 mg 5 
G 99.97  % 4 
H 100.02 % 5 

  
 

4.3.2.2 Significant Figures in Calculated Results 
 
Most analytical results in ORA laboratories are obtained by arithmetic combinations of numbers: 
addition, subtraction, multiplication, and division. The proper number of digits used to express 
the result can be easily obtained in all cases by remembering the principle stated above: 
numerical results are reported with a precision near that of the least precise numerical 
measurement used to generate the number. Some guidelines and examples follow. 
 
Addition and Subtraction 



 
ORA Lab Manual, Volume III, Section 4-Basic Statistics and Data Presentation                       Page 11 of 26 
 

This document is uncontrolled when printed: 2/11/2013 
For the most current and official copy, check the Internet at  

http://www.fda.gov/ora/science_ref/lm/default.htm 

 
The general guideline when adding and subtracting numbers is that the answer should have 
decimal places equal to that of the component with the least number of decimal places: 
 

21.1 
   2.037 
   6.13 
 ________ 
  29.267 = 29.3, since component 21.1 has the least number of decimal places 
 
Multiplication and Division 
 
The general guideline is that the answer has the same number of significant figures as the 
number with the fewest significant figures: 
  
         56 X 0.003462 X 43.72 
                      1.684 
 
A calculator yields an answer of 4.975740998 = 5.0, since one of the measurements has only two 
significant figures. 
 
4.4 Linear Curve Fitting 
 
This section deals with fitting of experimental data to a mathematical function. This situation is 
encountered in a variety of situations in the ORA laboratory, in particular with calibration 
curves. In most situations, the relationship between the variables is linear, and therefore a linear 
function is needed: 
 
y = f(x) = mx + b 
  
Where x = independent variable,  
 y =  dependent variable, 
 m =  calculated slope of line, and 
 b =  calculated y-intercept of line. 
 
The independent variable, x, is assumed to be known exactly, with no error (such as 
concentration, distance, time, etc.). The dependent variable, y, (instrument response for example) 
then depends on (is a function of) the value of x. Each value of the independent variable is 
assumed to follow a normal distribution and to have the same variance (i.e. square of the 
standard deviation). The method of  linear regression (also known as linear least squares) is used 
to fit experimental data to a linear function (note: in certain cases, a non-linear relationship may 
be reduced to a linear equation by a transformation of variables; if so, the linear regression 
method is still applicable). 
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The aim of linear regression is to find the line which minimizes the sum of the squares of the 
deviations of individual points from that line. Once that is accomplished, the slope (m) and the 
intercept (b) of the ‘least squares’ line is determined. It should be intuitively clear that 
minimizing deviations of data points from the fitted line gives the best fit of data. Given a set of 
data points (xi,yi), the equations used to determine the least squares parameters are: 
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An additional parameter, which is an indicator of the “goodness of fit” of the line to the data 
points, is the coefficient of determination. This coefficient denotes the strength of the linear 
association between x and y. The coefficient, r2, uses information on means and deviations of 
each data set to express variation numerically. If the two data sets correspond perfectly or 
exhibits no variation , a coefficient of 1 will be calculated. A coefficient of 0 indicates there is no 
relationship or no explanation of variation between the two data sets. Typically, for analytical 
work performed in the ORA laboratory, the coefficient should be very close to 1 (for example 
0.999). The formula for the coefficient of determination is: 
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where terms have been defined previously. 
 
The following figure illustrates several points relating to linear least squares curve fitting.  Data 
was entered into an Excel® spreadsheet and the linear least squares regression line calculated and 
plotted from the data. The vertical lines indicate the distances (residuals) that are minimized in 
order to achieve the best fit. 
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4.5 Development and Validation of Spreadsheets for 
Calculation of Data 
 
When using spreadsheets or programmable calculators for reduction of data generated by sample 
analyses, there should be assurance that the results are valid and usable for regulatory use.  The 
following section provides guidance for assuring that spreadsheets will meet these criteria. 
 
4.5.1 Introduction 
 
Although the formulas given above for calculation of statistical parameters may seem 
complicated, matters are simplified by the ready availability of spreadsheets and calculators 
which provide these values transparently. This makes calculation of statistical parameters much 
more straightforward than in the past, when direct application of these formulas was used. It is 
still useful to have some familiarity with these formulas to understand how statistical parameters 
are derived. In addition, there may be a need to verify the results of statistical data generated by a 
spreadsheet or calculator; data can be plugged directly into the formulas above to verify these 
results. 
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4.5.2 Development of Spreadsheets 
 
Excel® and other spreadsheets incorporate all of the statistical parameters discussed, as well as 
many others. Although individual spreadsheet functions can be considered as reliable, it is 
important to make sure that data is presented to the spreadsheet with the proper syntax. Also, 
when spreadsheets are used for multiple numerical calculations in the form of in-house 
developed templates, it is important to protect the spreadsheet from inadvertent changes, to 
verify the reliability of the spreadsheet by comparison with known results from known data, and 
to ensure that the spreadsheet can handle unforeseen data input needs. Spreadsheets developed in 
the ORA laboratory should be looked upon as in-house developed software that should be 
qualified before use, just as instruments are qualified before use. 
 
4.5.3 Validation of Spreadsheets 
 
General guidance for design and validation of in-house spreadsheets and other numerical 
calculation programs includes the following considerations: 
 

• Lock all cells of a spreadsheet, except those needed by the user to input data. 
 
• Make spreadsheets read-only, with password protection, so that only authorized users 

can alter the spreadsheet. 
 

• Design the spreadsheet so that data outside acceptable conditions is rejected (for 
example, reject non-numerical inputs). 

 
• Manually verify spreadsheet calculations by entering data at extreme values, as well 

as at expected values, to assess the ruggedness of the spreadsheet. 
 

• Test the spreadsheet by entering nonsensical data (for example alphabetical inputs, 
<CTRL> sequences, etc.). 

 
• Keep a permanent record of all cell formulas when the spreadsheet has been 

developed. Document all changes made to the spreadsheet and control using a system 
of version numbers with documentation. 

 
• Periodically re-validate spreadsheets. This should include verification of cell formulas 

and a manual reverification of spreadsheet calculations. 

 
4.6 Control Charts 
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A control chart is a graph of test results with limits established in which the test results are 
expected to fall when the instrument or analytical procedure is in a state of “statistical control.”   
A procedure is under statistical control when results consistently fall within established control 
limits.  There are a variety of uses of control charts other than identifying results that are out of 
control.  A chart will disclose trends and cycles which will allow real time analysis of data and 
information for deciding corrective action prior to say an entire analytical system goes out of 
control.  The use of control charts is strongly encouraged in regulatory science. 
 
4.6.1 Definitions 
 
Central line:  mean value of earlier determinations, usually a minimum of twenty results 
 
Inner control limit:  the mean value ± 2 standard deviations 
 
Outer control limit:  the mean value ± 3 standard deviation 
 
4.6.2 Discussion 
 
Control charts are frequently used for quality control purposes in the laboratory.  Control charts 
serve as a tool that determines if results performed on a routine basis (e.g. quality control 
samples) are acceptable for the intended purposes of the data.  
 
The mean control chart consists of a horizontal central line and two pairs of horizontal control 
limits lines.  The central line defines the mean value, the inner control limit (mean ± 2 standard 
deviations), and outer control limit (mean ± 3 standard deviations).  Results are plotted on the y-
axis against the x-axis variable (e.g. date, batch number).  
 
Results fall within the inner control limits 95% of the time.  Results falling outside the inner 
control limit serve as a warning that the results may be biased.  Results falling outside the outer 
control limit indicate the results are biased and corrective action should be taken.  
 
4.6.3 Quality Control Sample Example 
 
The control chart for a laboratory instrument often plots the results of the calibration result (y-
axis) against the date (x-axis). 
 
Mean control chart: 
   

• Calculate the mean calibration value  
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• Calculate ±2 standard deviation, ± 3 standard deviation values 

 
• Draw horizontal lines above and below the mean value at ±2 deviations and the mean 

value ± 3 standard deviations 
 
• Plot calibration results against the date or batch number 
 
• Define corrective actions if the calibration results fall outside the inner and outer 

control limits. 
 
4.6.4 References 
 
Pecsok, Shields, Cairns. (1986).  Modern methods of analysis (2nd Ed.). New York: John Wiley 
and Sons.  
 
Steinmeyer, K. P. (1994).  Mathematics review for health physics technicians.  Hebron, CT: 
Radiation Safety Associates Publications.  (Also 2nd Ed. in 1998.) 
 
4.7 Statistics Applied to Drug Analysis 
 
Chemists in ORA laboratories may have to analyze a wide range of human and animal drugs in a 
number of different dosage forms, and using differing analytical methods. Statistical evaluation 
of the analytical results is important for making regulatory decisions. 
 
4.7.1 Introduction 
 
Drug analysis, as well as most analysis performed in the ORA laboratory, relies on the statistical 
concepts defined above. In addition, there are references in the United States Pharmacopeia 
(USP) and other official references with which the drug analyst should be familiar. 
 
4.7.2 USP Guidance on Significant Figures and Rounding 
 
Under GENERAL NOTICES, the USP has several references, either direct or implied, to statistics, 
reporting of results and maintaining precision during an analysis. The drug analyst should be 
thoroughly familiar with the “Significant Figures and Tolerances” section of the USP. Highlights 
of this section are summarized as follows: 
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• Numerical limits specified in a monograph include the extremes of the values and all 
values in between, but no values outside these limits. This statement should be 
applied after proper rounding of numerical results. If, for example, a properly 
rounded result is found to lie exactly at the extreme of a limit (e.g. limits 98.0-102.0% 
of declared; found 102.03%, rounded to 102.0%) then the monograph limits are met. 
If the result lies outside the numerical limits (e.g. 98.0-102.0% of declared; found 
102.05%, rounded to 102.1%), then the monograph limits are not met. 

 
• Numerical result should be reported to the same number of decimal places as the limit 

expression stated in the monograph. For example, if limits are stated as 90.0-110.0% 
of declared, report results to 1 decimal place (e.g. 98.3%, 101.8%), after applying 
USP rounding rules.  

 
• The USP has slightly different rounding rules than those commonly encountered, as 

discussed earlier in section 4.3.1. The difference is when a value ends in 5. USP 
rounding conventions are as follows: 

 
- Retain only one extra digit to the right of the rightmost digit of the monograph 

limit expression 
- If the extra digit is less than 5, drop the digit. 
- If the extra digit is greater than 5, drop it and increase the previous digit by 

one 
- If the extra digit is exactly five, then drop it and (always) increase the 

previous digit by one. 
 
• An explicit statement is made for titrimetric procedures: essentially all factors, such 

as weights of analyte, should be measured with precision commensurate with the 
equivalence statement given in the monograph. Examples in the significant figures 
section above illustrate the importance of this for all analytical work. 

 
• There is a table given in SIGNIFICANT FIGURES AND TOLERANCES that gives 

examples of USP conventions for rounding, reporting, and comparison of results with 
compendial limits. This should be reviewed and thoroughly understood by all ORA 
drug analysts. A few additional examples are given in the following table: 

 
Compendial 
Requirement 

Unrounded 
Result 

Rounded 
Result 

Conforms? 
(Y/N) 

94.95% 95.0% Y 
94.94% 94.9% N 

Assay not less than 95.0 
And not more than 105.0% 
of Declared 105.65% 105.7% N 

0.24% 0.2% Y Limit Test LTE 0.2% 0.25% 0.3% N 
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4.7.3 Additional Guidance in the USP 
 
Also under GENERAL NOTICES, TESTS AND ASSAYS, is additional guidance. An important section 
is “Test Results, Statistics, and Standards,” which is of particular regulatory significance. 
Important points to understand include: 
 

• USP compendial instructions or guidelines are not to be applied “statistically,” 
meaning the conformance or non-conformance of a product is determined by a single 
test which may be applied to any portion of a sample, at any time throughout its 
stated shelf life. The monograph limits are chosen so that inherent uncertainty in the 
method is taken into account, and system suitability tests verify that the analytical 
system is reliable; therefore “any specimen tested as directed in the monograph 
complies”( FDA’s practice, nonetheless, is to perform a check analysis to confirm 
non-compliance with a monograph limits). 

 
• To emphasize the “singlet determination” viewpoint of the USP, the following 

statement is made: “Repeats, replicates, statistical rejection of outliers, or 
extrapolations of results to larger populations are neither specified nor proscribed by 
the compendia.”  

 
 
Finally, under GENERAL NOTICES, TESTS AND ASSAYS, the “Procedures” section includes some 
guidance that should be understood by the ORA Laboratory drug analyst: 
 

• Weights and volumes of test substances and reference standards may be adjusted 
proportionately, provided that such adjustments do not adversely affect the accuracy 
of the procedure. 

 
• Similarly, when a method calls for a standardized solution of a known concentration, 

a solution of a different concentration, molarity, or normality may be used, provided 
allowance is made for the differing concentration, and the error of measurement is not 
thereby increased. 

 
• Monographs often use expressions such as “25.0 mL” for volumetric measurements. 

This is not to be taken literally. In practice, volumes used quantitatively (i.e. the 
measurement will be used in a quantitative calculation) should be measured to the 
higher precision specified in “Volumetric Apparatus <31>” of the USP. This 
generally means that class A flasks, burets, and pipets are to be used, and with proper 
analytical technique employed. Similarly for weights: “25.0 mg” means that the 
weighing should be performed with a high precision balance meeting standards set 
forth in “Weights and Balances <41>.” 
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4.7.4 References 
 
(Current Ed.). U. S. Pharmacopeia and national formulary. Rockville, MD: United States 
Pharmacopeial Convention, Inc. 
 
4.8 Statistics Applied to Radioactivity 
 
ORA laboratories may be involved in the identification and quantitative measurement of 
radionuclides in foods, drugs, and the environment. Instrumentation varies from simple counters 
to solid state detectors that measure both discrete energy levels and the quantity of radiation in 
these samples. The correct application of statistical principles is important for arriving at the 
correct analytical result that will support regulatory decisions. 
 
4.8.1 Introduction 
 
Statistics is directly and intimately involved in measurements of radioactivity. Whereas most 
measurements made in the ORA laboratory are based on variables which vary continuously, 
radioactivity measurements are based on the counting of discrete, random events. In this case, 
the normal distribution probability function is replaced by the Poisson distribution, and the 
associated statistical parameters (mean, standard deviation) are therefore expressed differently. 
 
4.8.2 Sample Counting 
 
Radioactive decay is a random process that is described quantitatively in statistical terms.  
Therefore repeatedly counting radioactive transformations in a sample under identical conditions 
will not necessarily result in identical values.  The result of counting sample radiations is  
 

sNcounts  sampleof number = . 
 

The standard deviation of the sample counts, based on Poisson statistics, is 
 

ss Ncounts  sampleof deviation standard == σ . 
 
Noise originating in the background, also a random process, simultaneously generates counts that 
are indistinguishable from those originating in the sample, and therefore the total or gross counts 
observed from counting a sample include background counts, 
 

bsg NNNcounts  samplegross +==  
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where counts  sampleN s = , and 
 counts backgroundNb = . 
 
It follows that the counts due to sample radioactivity are obtained by subtracting the background 
noise count from the sample gross counts 
 

bgs NNN −= . 
  
The counting rate due to sample radioactivity is  
 

s

s
s t

NR =  

 
where ts = sample counting interval. 

 
The sample counting rate can also be expressed as 
 

b

b

g

g
bgs t

N
t
N

RRR −=−= ’ 

 
 
where rate counting  samplegrossRg = , 
 rate counting backgroundRb = , 
 interval counting  samplegrosstg = , and 
 interval counting background  tb = . 

 
4.8.3 Standard Deviation and Confidence Levels 
 
The standard deviation is a measure of the dispersion of values of a random variable about the 
mean value.  For a large number of measurements, 68 percent would be expected to lie within 
plus and minus one standard deviation of the mean of the measurements; 96 percent would occur 
within plus or minus two standard deviations.   
 
The standard deviation of the sample counting rate, Rsσ  is given by 
 

b

b

g

g
RRR t

R
t
R

bgs
+=+= 22 σσσ  
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where rate counting  samplegross the of deviation  standard
gR =σ , and 

 rate counting background the of deviation  standard
bR =σ . 

 
The sample rate plus or minus one standard deviation is reported as 
 

b

b

g

g
sRs t

R
t
R

RR
s

+±=±σ . 

 
 
If a measured value is reported within the limits of one standard deviation, there is a 68 percent 
certainty, or 68 percent confidence level, that the true value of the measured quantity is between 
the given limits. In other words, there is a 68 percent certainty that the real value lies within the 
limits. If the value is reported at the 96 percent confidence level, the true value is within plus or 
minus two standard deviations of the reported value.  Several confidence levels are tabulated 
below: 
 
 

Confidence 
Level (%) 

Number of 
Standard 

Deviations 
(σs) 

90 1.645 
95 1.960 
96 2.0 
99 2.58 

  
Example. A sample counted for 100 seconds yields 2300 gross counts. The background 
measured under identical conditions yields 100 counts in 10 seconds.  Calculate the sample 
counting rate (counts per second) and the standard deviation of the sample counting rate.  Report 
the results at the 96% confidence level. 
 

  cps 13cps 10-cps 23
s 10

counts 100
s 100

counts 2300
==−=sR . 

 

  cps 2.1
10
13

100
23

=+=
sRσ . 

 
cps 4.2 cps 13 ±=sR  

 
4.8.4 Counting Rate and Activity 
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The sample counting rate is proportional to sample activity, and may be converted to 
radioactivity units using correction factors.  These may include detector efficiency in units of 
counts per disintegration, chemical recovery fraction, fractional radiation yield, and others.  The 
sample activity may be obtained from the counting rate as follows: 
 

Yrε
t
R

t
R

R

Yrε
R

activity sample b

b

g

g
s

Rs s

××

+±

=
××

±
=

σ
  

 
where efficiency detector ε = , 
 recovery  chemical  r = , and 
 yield radiation  Y = . 
 
Example. A Sr-89 sample, counted using a detector having a 50% beta-particle detection 
efficiency for Sr-89 (0.5 counts per Sr-89 disintegration which emits one beta particle per 
disintegration), yields 500 gross counts in 10 seconds. The background count was 100 counts in 
60 seconds.  The chemical recovery of strontium was 86%.  Report the approximate activity in 
the sample at the 68% confidence level.   
 

cps2.23.48cps 
60

7.1
10
50

s 60
counts 100

s 10
counts 500

±=+±−=±
sRsR σ  

 

Bq 2.54.112Bq
86.05.0

 2.23.48activity  Sample ±=
×
±

=  

 
where 1 Bq (Becquerel) = 1 disintegration/s. 
 
4.9 Statistics Applied to Biological Assays 
 
Biological assays are those carried out by dosing a biological test system (such as a rat or mouse) 
with the substance to be determined, and measuring a response. An example is the USP 
monograph for Menotropins. This biological extract contains Luteinizing Hormone (LH) and 
Follicle Stimulating Hormone (FSH), which have effects on the reproductive organs. The assay 
consists of dosing male (LH) and female (FSH) rats with menotropins and observing the effects 
(weight) on the seminal vesicles and ovaries respectively after a multiple day incubation time. 
 
Although this type of assay will rarely be encountered in the ORA laboratory, biological assays 
are instructive in the statistical complexity encountered when dealing with highly variable 
systems such as live animals. The interpretation of results is complicated by the fact that the total 
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variance of a measurement includes a large variance due to the biological component. The 
analyst may also encounter these assays when on team inspections. 
 
The subject of biological assays is addressed in General Chapter <111> of the USP, “Design and 
Analysis of Biological Assays,” where an extensive statistical treatment is developed, based on 
the Analysis of Variance (ANOVA). This is also one of the rare instances in the USP where 
rejection of “outlier data” is allowed, under strict statistical justification. The interested reader is 
referred to <111> for further information.  
 
4.10 Statistics Applied to Microbiological Analysis 
 
Several analyses used by ORA microbiologists call for the enumeration of microorganisms by 
statistical means.  Two commonly used procedures for estimating the number of microorganisms 
in a product are the plate count and the Most Probable Number (MPN) tube methods. To avoid 
fictitious impression of precision and accuracy, only 2 significant figures are reported.  Many 
regulatory decisions pertaining to microbial contamination or time-temperature abuse of food 
will be based upon the level of organisms present.  
 
4.10.1 Introduction 
 
Many microbiological analyses involve the counting of discrete events, for example plate and 
tube counts for microbial growth and isolated colonies. As in the case for radioactivity, the 
situation is one of random, discrete, and relatively improbable events (such as growth of a colony 
forming unit on an agar plate), and Poisson statistics apply. 
 
4.10.2 Geometric Mean 
 
In microbiological assays, because of the techniques used and the fact that biological systems are 
being measured, a variety of unique statistical situations arise. When determining, for example, 
the number of colony forming units on a plate from a large number of replicate inoculations, the 
data often does not correspond to the expected normal distribution. That is, if the frequency of a 
given number of colonies is plotted against the observed number of colonies, a non-symmetrical 
frequency distribution is observed (note that the normal distribution curve is completely 
symmetrical, centered about the arithmetic mean). Instead the distribution is skewed, or tailed at 
the higher end. This is attributed to the fact that bacterial counts tend to favor lower counts and 
disfavor extremely high counts. In this situation, the arithmetic mean is not the best statistical 
indicator; instead the geometric mean is most often used: 
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where xi are the individual counts, and  ∏ indicates that the product of the observations is 

determined rather than the sum.  
 
For example, the arithmetic mean of the individual observations 1, 2 and 3 is: 
 
( )

3
321 ++ = 2 

 
whereas the geometric mean of the same observations is: 
 
( ) 3/1321 xx = 1.8 
 
 
Question: Why would one expect lower plate counts to be more probable than higher counts, 
thus causing a skewed probability distribution?  Answer:  As the number of counts on a plate 
rises, in other words the density of colonies rises, an overcrowding error occurs from individual 
colonies inhibiting the formation of other colonies nearby. Another factor appears to be a 
“counting fatigue” error at high numbers, where the analyst may not count accurately because of 
the large numbers involved. 
 
An alternative way to calculate the geometric mean, which can be easily derived from the 
product expression above, is to add the logarithms of individual counts rather than form the 
product of the counts themselves. The geometric mean is then defined as: 
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This formula is much easier for calculation purposes, particularly when a large number of 
observations are involved. 
 
4.10.3 Most Probable Number 
 
Another statistical concept unique to microbiological observations is that of Most Probable 
Number (MPN). The Most Probable Number is a statistically derived estimate of the presence of 
microorganisms based on the presence or absence of growth in serially diluted samples. After an 
initial dilution, serial dilutions of the sample are made (for example, 1:10, 1:100, and 1:1000) 
with a number of replicate tubes (for example, 3 or 5) at each dilution. After incubation, the 
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presence or absence of growth in each tube is tabulated. The resulting code (number of positive 
tubes) is compared with published tables to give the most probable number of microorganisms 
per unit of original, undiluted sample. Most probable number tables are published for various 
numbers of tubes at a number of dilutions. The statistical derivation is beyond the scope of this 
discussion, but is based on Poisson counting statistics. Tables are published in the 
Bacteriological Analytical Manual (BAM), the AOAC Official Methods of Analysis, and General 
Chapter <61> of the USP. 
 
4.10.4 References 
 
(Current Ed.). “Microbial Limits Tests <61>,” U. S. Pharmacopeia and national formulary. 
Rockville, MD: United States Pharmacopeial Convention, Inc. 
 
Tomlinson, L. (Ed.). (1998). Bacteriological analytical manual (8th ed., Rev. A, in hardcopy). 
Washington DC: R. I. Merker, Ph.D., Office of Special Research Skills, Center for Food Safety 
and Applied Nutrition, U.S. Food & Drug Administration.  The current updated version is 
available online at: http://vm.cfsan.fda.gov/~ebam. 
 
4.11  Statistics Applied to pH in Canned Foods 
 
pH is a logarithmic measure for the acidity of an aqueous solution. Since pH represents the 
negative logarithm of a number, it is not mathematically correct to calculate simple averages 
or other summary statistics. Instead, the values should be converted to hydrogen ion 
concentrations, averaged, and re-converted to pH values.  
The following guidance is provided.  
 
1. Convert each pH value to hydrogen-ion activity (H+), using the equation:  
 
Activity = 10-pH  
In Excel, the formula is: =10^(-pH number)  
 
2. Calculate the mean of the activity values by adding the values and dividing the sum by 
the total number of values. Calculate the standard deviation also from the activity values.  
 
3. Convert the calculated mean activity back to pH units, using the equation:  
pH = (-)(log10)(mean H+ activity). Also convert the standard deviation to pH units.  
In Excel, the formula is: = -LOG10(number)  
 
When the pH values correspond closely, there is not a significant difference between the 
mathematical mean and the logarithmic mean. As the pH values spread further apart from 
each other, the difference between the two means become more significant. 
 
 

http://vm.cfsan.fda.gov/~ebam
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